Showing posts with label TECNOLOGY AND KNOWLEDGE. Show all posts
Showing posts with label TECNOLOGY AND KNOWLEDGE. Show all posts

Sunday 18 October 2015

ACCUMULATOR
An accumulator is a pressure storage reservoir in which hydraulic fluid is stored under pressure from an external source. The storage of fluid under pressure serves several purposes in hydraulic systems.


ACCUMULATOR :The accumulator absorbs the surge pressure that occurs within the hydraulic circuit, decreases the pulsing of the hydraulic pressure, and acts as a temporary source of pressure when the hydraulic pumps is shut off.


In some hydraulic systems it is necessary to maintain the system pressure within a specific pressure range for long periods of time. It is very difficult to maintain a closed system without some leakage, either external or internal. Even a small leak can cause a decrease in pressure. By using an accumulator, leakage can be compensated for and the system pressure can be maintained within an acceptable range for long periods of time. Accumulators also compensate for thermal expansion and contraction of the liquid due to variations in temperature.
Figure 9-5.–Cross-section view of a piston-type accumulator with a tailrod.

A liquid, flowing at a high velocity in a pipe will create a backward surge when stopped suddenly by the closing of a valve. This sudden stoppage causes instantaneous pressures two to three times the operating pressure of the system. These pressures, or shocks, produce objectionable noise and vibrations which can cause considerable damage to piping, fittings, and components. The incorporation of an accumulator enables such shocks and surges to be absorbed or cushioned by the entrapped gas, thereby reducing their effects. The accumulator also dampens pressure surges caused by pulsating delivery from the pump.
There are times when hydraulic systems require large volumes of liquid for short periods of time. This is due to either the operation of large cylinders or the necessity of operating two or more circuits simultaneously. It is not economical to install a pump of such large capacity in the system for only intermittent usage, particularly if there is sufficient time during the working cycle for an accumulator to store up enough liquid to aid the pump during these peak demands.
The energy stored in accumulators maybe also used to actuate hydraulically operated units if normal hydraulic system failure occurs. Four types of accumulators used in Navy hydraulic systems are as follows:
1. Piston type
2. Bag or bladder type
3. Direct-contact gas-to-fluid type
4. Diaphragm type
PISTON-TYPE ACCUMULATORS
Piston-type accumulators consist of a cylindrical body called a barrel, closures on each end called heads, and an internal piston. The piston may be fitted with a tailrod, which extends through one end of the cylinder (fig. 9-5), or it may not have a tailrod at all (fig. 9-6). In the latter case, it is referred to as a floating piston. Hydraulic fluid is pumped into one end of the cylinder and the piston is forced toward the opposite end of the cylinder against a captive:
Figure 9-6.—Floating piston-type accumulator. 
charge of air or an inert gas such as nitrogen. Sometimes the amount of air charge is limited to the volume within the accumulator; other installations may use separate air flasks which are piped to the air side of the accumulator. Piston accumulators may be mounted in any position. The gas portion of the accumulator may be located on either side of the piston. For example, in submarine hydraulic systems with tailrod pistons, the gas is usually on the bottom and the fluid on top; in surface ships with floating pistons, the gas is usually on the top. The orientation of the accumulator and the type of accumulator are based upon such criteria as available space, maintenance accessibility, size, need for external monitoring of the piston’s location (tailrod indication), contamination tolerance, seal life, and safety. The purpose of the piston seals is to keep the fluid and the gas separate.
Usually, tailrod accumulators use two piston seals, one for the air side and one for the oil side, with the space between them vented to the atmosphere through a hole drilled the length of the tailrod. When the piston seals fail in this type of accumulator, air or oil leakage is apparent. However, seal failure in floating piston or nonvented tailrod accumulators will not be as obvious. Therefore, more frequent attention to venting or draining the air side is necessary. An indication of worn and leaking seals can be detected by the presence of significant amounts of oil in the air side.
BLADDER-TYPE ACCUMULATORS
Bladder- or bag-type accumulators consist of a shell or case with a flexible bladder inside the shell. See figure 9-7. The bladder is larger in diameter at the top (near the air valve) and gradually tapers to a smaller diameter at the bottom. The synthetic rubber is thinner at the top of the bladder than at the bottom. The operation of the accumulator is based on Barlow’s formula for hoop stress, which states: "The stress in a circle is directly proportional to its diameter and wall thickness." This means that for a certain thickness, a large diameter circle will stretch faster than a small diameter circle; or for a certain diameter, a thin wall hoop will stretch faster than a thick wall hoop. Thus, the bladder will stretch around the top at its largest diameter and thinnest wall thickness, and then will gradually stretch downward and push itself outward against the walls of the shell. As a result, the bladder is capable of squeezing out all the liquid from.
Figure 9-7.—Bladder-type accumulator.
the accumulator. Consequently, the bladder accumulator has a very high volumetric efficiency. In other words, this type of accumulator is capable of supplying a large percentage of the stored fluid to do work. The bladder is precharged with air or inert gas to a specified pressure. Fluid is then forced into the area around the bladder, further compressing the gas in the bladder. This type of accumulator has the advantage that as long as the bladder is intact there is no exposure of fluid to the gas charge and therefore less danger of an explosion.

DIRECT CONTACT GAS TO FLUID ACCUMULATORS
 Direct-contact gas-to-fluid accumulators generally are used in very large installations where it would be very expensive to require a piston-or bladder-type accumulator. This type of accumulator consists of a fully enclosed cylinder, mounted in a vertical position, containing a liquid port on the bottom and a pneumatic charging port at the top (fig. 9-8). This type of accumulator is used in some airplane elevator hydraulic systems where several thousand gallons of fluid are needed to supplement the output of the hydraulic pumps for raising the elevator platform. The direct contact between the air or gas and the hydraulic fluid tends to entrain excessive amounts of gas in the fluid. For this reason, direct contact accumulators are generally not used for pressures over 1200 psi. The use of this type of accumulator with flammable fluid is dangerous because there is a possibility of explosion if any oxygen is present in the gas, and pressure surges generate excessive heat. For this reason, safety fluids are used in this type of installation.
DIAPHRAGM ACCUMULATORS 
The diaphragm-type accumulator is constructed in two halves which are either screwed or bolted together. A synthetic rubber diaphragm is installed between both halves, making two chambers. Two threaded openings exist in the assembled component. The opening at the top, as shown in figure 9-9, contains a screen disc which prevents the diaphragm from extruding through the threaded opening when system pressure is depleted, thus rupturing the diaphragm. On some designs the screen is replaced by a button-type protector fastened to center.
Figure 9-8.—Direct-contact gas-to-fluid accumulator.
Figure 9-9.—Diaphragm accumulator.
of the diaphragm. An air valve for pressurizing the accumulator is located in the gas chamber end of the sphere, and the liquid port to the hydraulic system is located on the opposite end of the sphere. This accumulator operates in a manner similar to that of the bladder-type accumulator.


Sunday 4 October 2015



2 SPR sniper rifle made by PT Pindad, defense equipment company owned by the Government of Indonesia, the center became a byword in the international world. Apparently, advanced sniper rifle used Kopassus can not be made by any country.
So what's so special? Well, the following facts Pindad arms to Kopassus that gegerkan world, as compiled Merdeka.com: Check the following pages other advantages of SPR Rifle 2 has reached the target range of 2 km. But the effective distance of 1 km.
According to the Head of the Department of Communication PINDAD, Sena Maulana, little foreign-made sniper that can compete with the SPR 2.
Most foreign-made sniper target range under SPR 2.
"The sniper Rival black arrow and truvellow. Both are under the gun Kopassus SPR 2 of this scope," he said. (Ism

SPR rifle ammunition 2 also has a somewhat special, can give three effects simultaneously. Pierce, burn and explode inside the target at a time

2 SPR sniper rifle relatively large class. SPR 2 has a 12.7-millimeter caliber ammunition. In the market usually just 5.62 millimeters not comparable with Kopassus weapons ini.jenis SPR sniper rifle bullet 2 PT Pindad feared many countries. This bullet can penetrate armored vehicles though. "Ammunition of 12.7 mm anti-material. Bullet type most feared because it can penetrate tanks and armored vehicles," said Head of the Department of Communication PINDAD, Sena Maulana.

2 SPR sniper rifle originated from sniper SPR 2 foreign-owned military did not dare tested. Then PINDAD trying to test and ultimately make their own. "In 2003, TNI has 3 shoots of other countries but do not dare to test for heavy and bulky. Finally we test together and our own in 2006, the inception of this Special Forces weapon," he said.

PT Pindad produces SPR sniper rifle 2 for use Kopassus. This weapon also invite admiration of the world. "We're making 150 shoots (SPR rifle 2) for Kopassus. World sniper has direct international uproar, how about more?" said Head of the Department of Communication PINDAD, Sena Maulana.

According to him, the ability to make weapons PINDAD it makes some countries attracted want to have. Currently arms exhibition in 2014 (Indo Defence) this time many countries who want to see up close the rifle. "The foreigners are also directly see here. They've heard the greatness of this Special Forces weapons, we are able to make," he said.
Google Translate for Business:Translator Toolkit